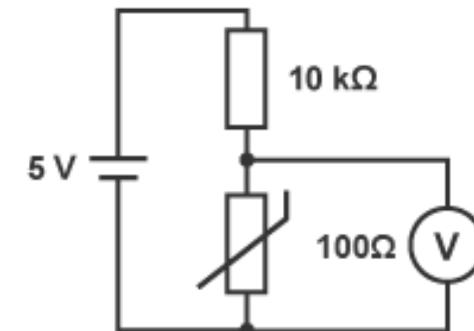
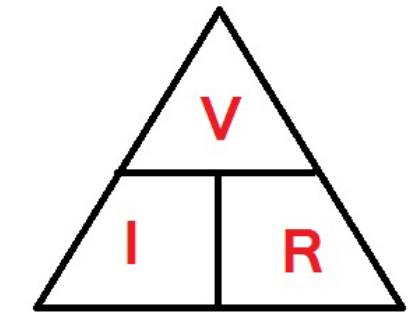


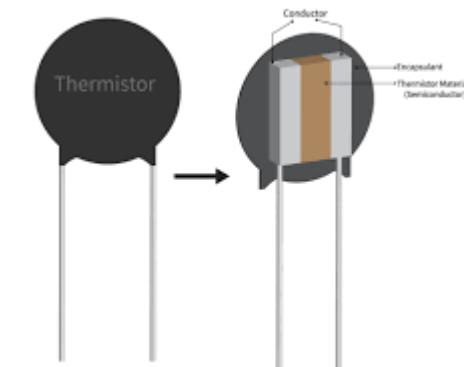
Sensors, Actuators and Controllers

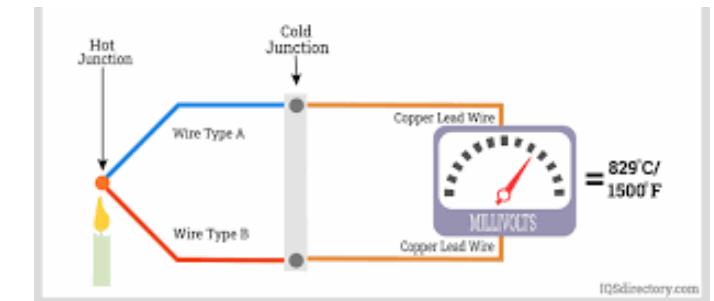
Sensors

- Sensors detect aspects of an environment
- **Input:** Sensors can measure parameters such as temperature, pressure, humidity, motion, light, sound, chemical composition, or even biological properties.
- **Output:** The output of a sensor is usually an electrical signal that corresponds to the measured property. This signal is often processed and used by other systems or devices.

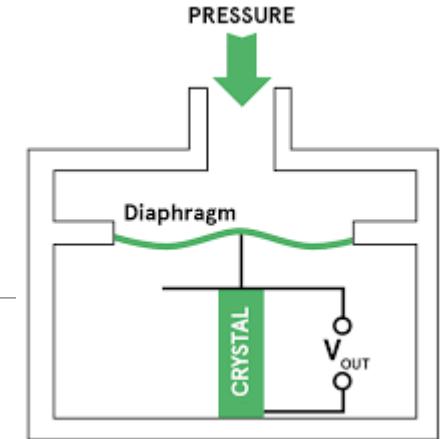
Voltage divider circuit

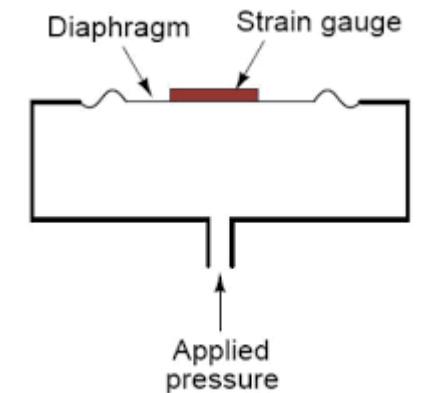

- To measure sensors which are resistance based a potential divider is often used
- A potential divider converts resistance change into a measurable voltage change, which is easier for most microcontrollers or measuring devices to process.


Temperature Sensors

- **Purpose:** Measure the temperature of the environment, equipment, or processes.
- **How they work:** Convert changes in heat into electrical signals that can be read by control systems.
- **Common Types:**
 - Thermocouples – robust, wide temperature range, often used in industry.
 - Thermistors – very sensitive to small changes, used in devices like digital thermometers. Two types: Negative temp coefficient (NTC) and positive temp coefficient (PTC)

Thermistor Circuit Symbol

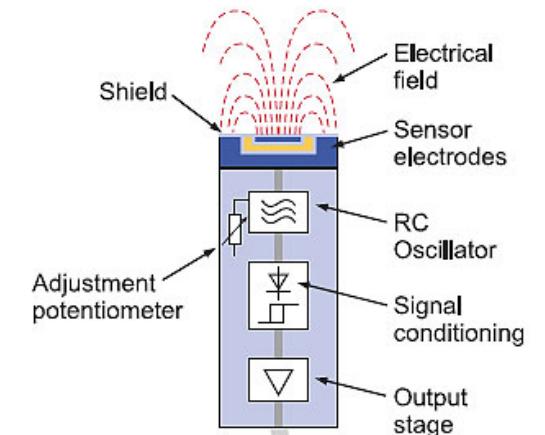
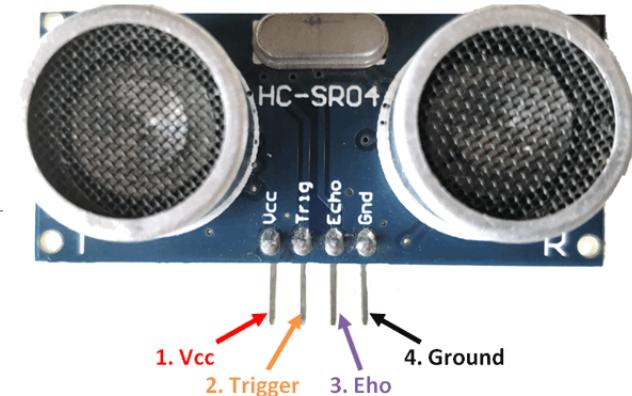

Thermistor – outputs resistance


Thermocouple – output voltage

Pressure Sensors

- **Purpose:** Measure the pressure of gases and liquids.
- **How they work:** Convert force from the fluid (gas or liquid) pressing on a surface into an electrical signal.
- **Common Types:**
 - Strain Gauge – pressure causes a thin diaphragm to bend; this stretches the strain gauge, changing its resistance.
 - Piezoelectric – pressure produces a tiny voltage in certain crystals when they are squeezed.
- **What happens when pressure increases:**
 - In a strain gauge, resistance increases or decreases depending on how it is stretched.
 - In a piezoelectric sensor, a larger voltage is generated as pressure rises.

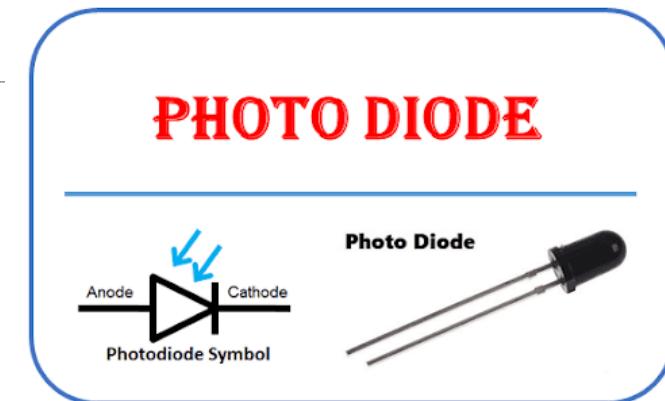
Piezoelectric pressure sensor – output voltage

Strain Gauge – output voltage

Proximity Sensors

- **Purpose:** Measure how far away an object is, or detect its presence, without physical contact.
- **How they work:** Send out a signal (sound wave, electromagnetic field, or light) and detect changes when something comes close.
- **Common Types:**
 - Ultrasonic – send out high-frequency sound waves; the sensor measures the time taken for the echo to return to calculate distance.
 - Capacitive Proximity Sensor – detects changes in capacitance when an object (often something conductive or with water content) comes near.
- **What happens when an object gets closer:**
 - Ultrasonic: shorter echo time → smaller calculated distance.
 - Capacitive: capacitance increases, so the sensor outputs a signal.


Ultrasonic sensor with pinouts – output voltage

Capacitive proximity sensor – output voltage

Light Sensors

- **Purpose:** Measure the intensity (brightness) of light in the environment.
- **How they work:** Convert light energy into a change in resistance or an electrical signal.
- **Common Types:**
 - LDR (Light Dependent Resistor) – resistance decreases as light intensity increases, allowing more current to flow.
 - Photodiode – produces a small current when exposed to light; brighter light creates a larger current.
- **What happens when light increases:**
 - LDR: resistance goes down → current rises.
 - Photodiode: current output rises with more light.

PHOTO DIODE

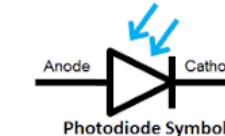
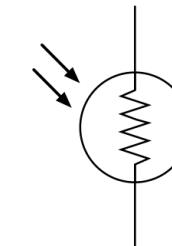
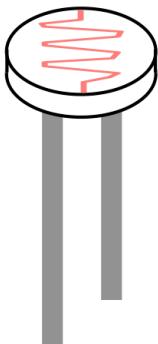
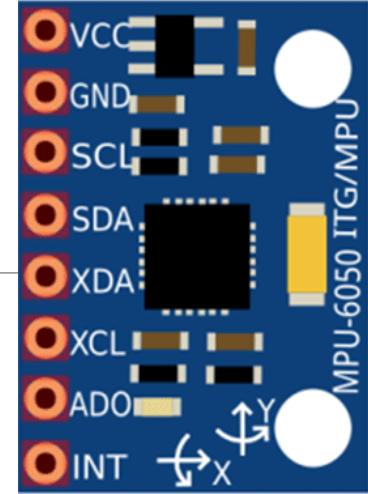




Photo Diode –
Output voltage


LDR circuit symbol

LDR – Output
resistance

Motion Sensors

- **Purpose:** Detect movement, tilt, rotation, or vibration.
- **How they work:** Use tiny mechanical structures on a chip that shift or vibrate when the device moves, converting this into an electrical signal.
- **Common Types (often combined in one chip):**
 - Accelerometers – measure acceleration and tilt (e.g., how quickly something speeds up or the angle it is tilted).
 - Gyroscopes – measure rotation or angular velocity (how fast something spins).
- **Example Device:**
 - MPU6050 – a popular motion sensor module that combines a 3-axis accelerometer and a 3-axis gyroscope in one chip.

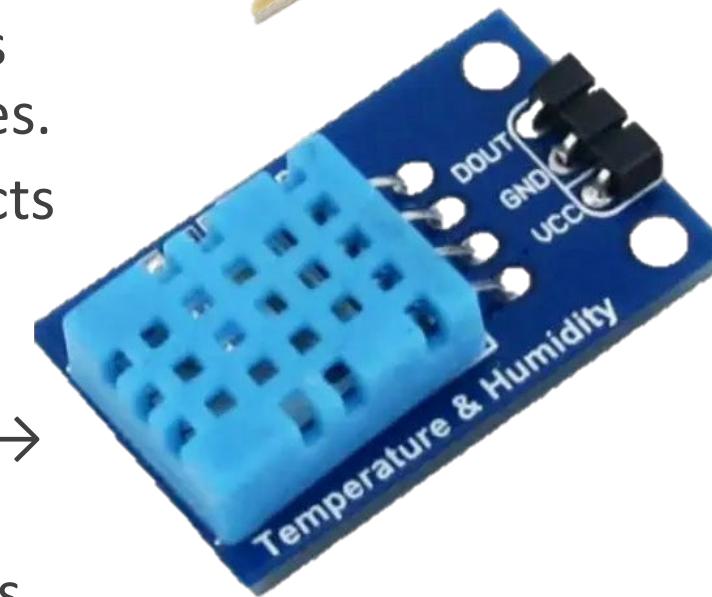
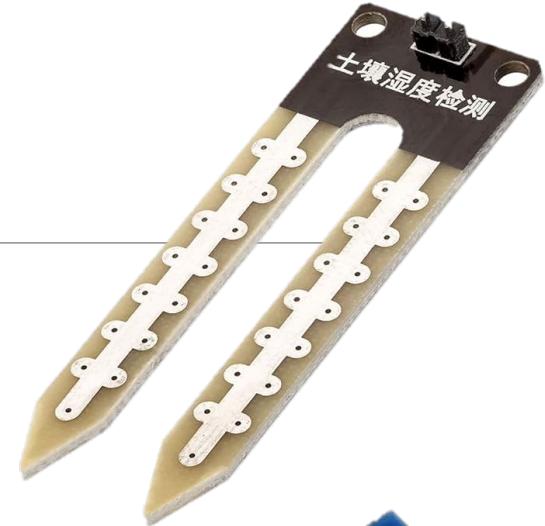
An accelerometer –
Output is either voltage
for analogue or a signal
for digital

Switches & Buttons

- **Purpose:** Used as simple sensors to detect user input or the position of a machine part.
- **How they work:** Open or close an electrical circuit when pressed, flipped, or triggered. This change in circuit state acts as a digital signal (“on/off”).
- **Common Types:**
 - Push Button – pressed by the user to send a short signal (e.g., start/stop, reset).
 - Toggle Switch – stays in position until flipped (on/off control).
 - Micro/Limit Switch – activated by machine parts reaching a certain position.
- **What happens when pressed or switched:**
 - Circuit changes from open → closed (ON) or closed → open (OFF).
 - Provides a clear digital signal for controllers to act on.

Cameras

- **Purpose:** Capture images or video to sense the environment in detail.
- **How they work:** Light passes through a lens onto a sensor (CCD or CMOS), which converts the light into electrical signals to form a digital image.
- **What happens when light changes:**
 - Brighter light produces stronger signals (clearer image).
 - Low light produces weaker signals (darker/noisier image).



Sound Sensors (Microphones)

- **Purpose:** Detect sound waves or vibrations in the air and convert them into electrical signals.
- **How they work:** A diaphragm inside the sensor vibrates when hit by sound waves. These vibrations are turned into changes in voltage or current.
- **Common Types:**
 - Condenser Microphone – very sensitive, used in audio equipment.
 - Electret Microphone – small, low-cost, often used in phones and sensors.
- **What happens when sound increases:**
 - Louder sound → diaphragm vibrates more → bigger electrical signal.

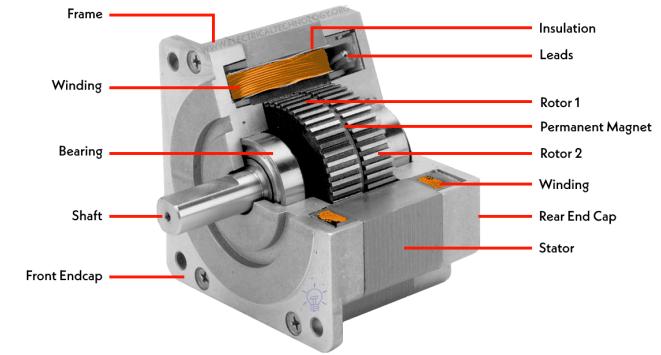
Moisture / Humidity Sensors

- **Purpose:** Measure the amount of water present in air (humidity) or in materials like soil.
- **How they work:**
 - Humidity sensors detect changes in electrical properties (capacitance or resistance) as moisture in the air changes.
 - Soil/moisture sensors measure how well the soil conducts electricity, which increases with water content.
- **What happens when moisture increases:**
 - Air humidity sensor: capacitance or resistance changes → stronger signal.
 - Soil sensor: conductivity increases → more current flows.

Actuators

- Actuators allow for a circuit to interact with the environment by converting energy (often electrical, hydraulic, or pneumatic) into mechanical motion
- **Input:**
 - **Energy Source:** Provides the power needed for motion (e.g., electricity, compressed air, or hydraulic fluid).
 - **Control signal:** Determines the actuator's operation, often coming from a control system (e.g., microcontroller, PLC).
- **Output:** Actuators give a mechanical output which is the motion generated by the actuator, such as linear or rotational movement.

Actuators Outputs

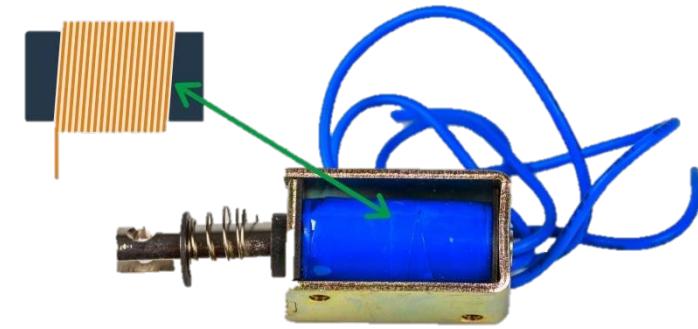


- **Linear Actuators:** Produce straight-line motion (e.g., hydraulic pistons, lead screw actuators).
- **Rotary Actuators:** Produce rotational motion (e.g., motors, rotary solenoids).
- **Combination Actuators:** Use mechanisms like cams or gears to combine motions.

Electric Actuators - Motors

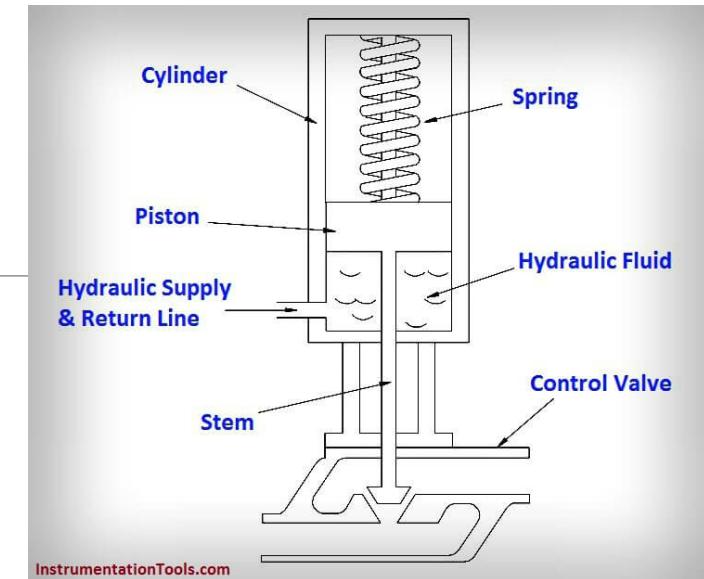
- **Purpose:** Convert electrical energy into mechanical movement (rotation or motion).
- **How they work:** When an electric current flows through a coil inside a magnetic field, it produces a force (the motor effect) that makes the shaft turn.
- **Common Types:**
 - DC Motors – simple, rotate when powered; speed changes with voltage.
 - Stepper Motors – rotate in precise steps, useful for positioning.
 - Servo Motors – allow controlled angle or position movement.
- **What happens when voltage increases:**
 - More current flows → motor spins faster or with more torque (depending on type).

A stepper motor
Output – Rotary
Input – Power & Control Signal

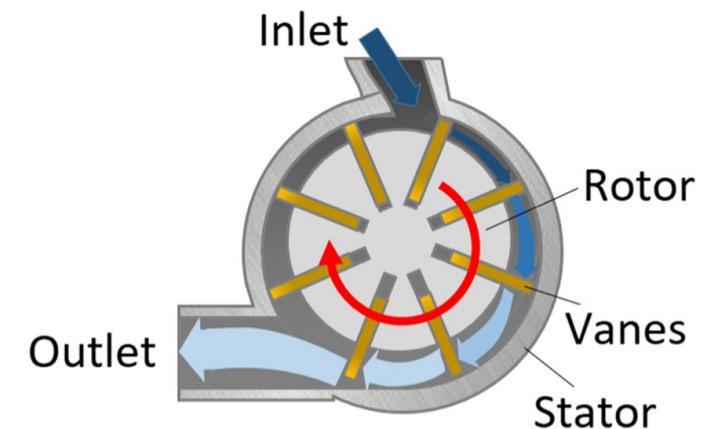
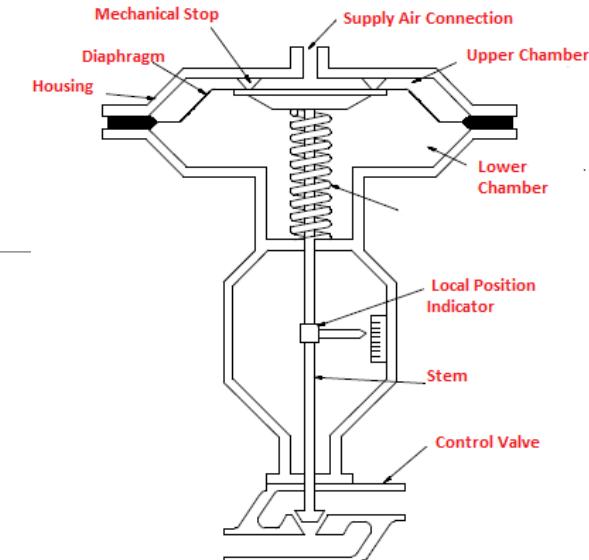


An electric motor
Output – Rotary
Input – Power

Electric Actuators - Solenoid


- **Purpose:** Convert electrical energy into a linear (straight-line) pushing or pulling motion.
- **How they work:** A coil of wire creates a magnetic field when current flows. This magnetic field pulls or pushes a metal rod (plunger) inside the coil.
- **What happens when voltage is applied:**
 - Current flows through the coil → magnetic field is created → plunger moves in or out.
- **Types of Solenoids:**
 - Pull-type – plunger is pulled into the coil.
 - Push-type – plunger is pushed out when activated.

An electric solenoid
Output – Linear
Input – Power



Hydraulic Actuators

- **Purpose:** Use pressurised liquid (usually oil) to create linear or rotary movement with high force.
- **How they work:** A pump forces fluid into a cylinder or motor. The fluid pressure pushes against a piston (linear motion) or rotates a shaft (rotary motion).
- **What happens when pressure increases:**
 - More fluid pressure → greater force or torque output.
- **Types of Hydraulic Actuators:**
 - Hydraulic Cylinder – produces straight-line (linear) movement.
 - Hydraulic Motor – produces rotary motion.

Pneumatic Actuators

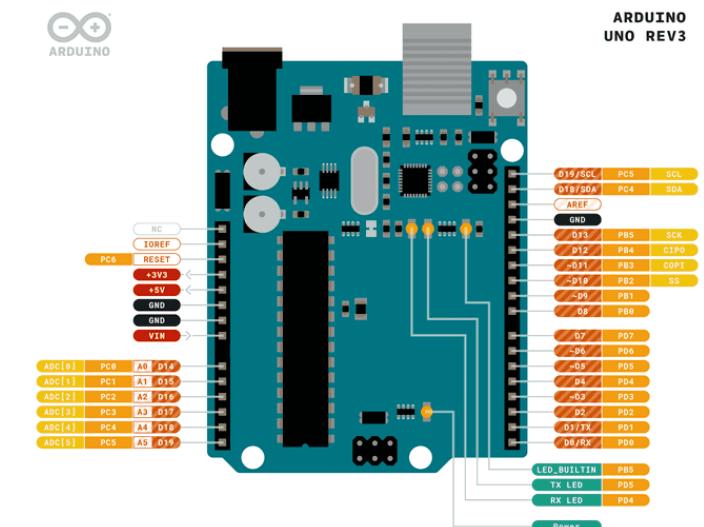
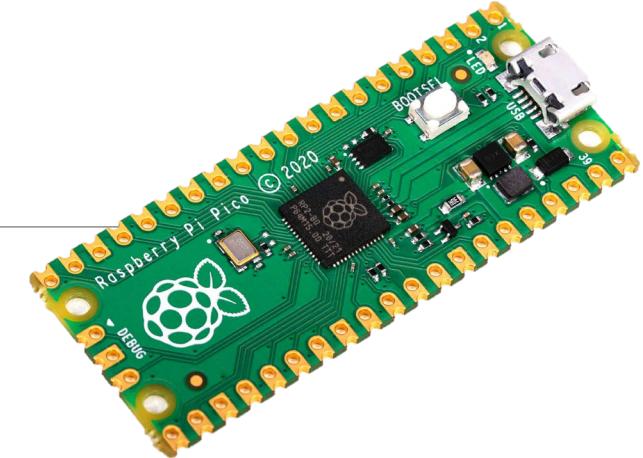
- **Purpose:** Use compressed air to create linear or rotary motion.
- **How they work:** Air pressure is applied to a piston inside a cylinder (for linear motion) or to a vane/rotor (for rotary motion). The expansion of compressed air pushes the actuator into movement.
- **What happens when air pressure increases:**
 - Higher pressure → stronger movement or force output.
- **Types of Pneumatic Actuators:**
 - Cylinders – provide straight-line pushing or pulling.
 - Pneumatic motors/rotary actuators – provide rotation.

Characteristics to Consider When Choosing an Actuator

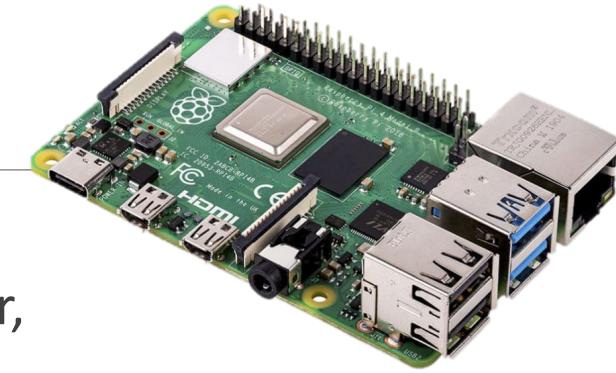
- **Speed** – How quickly the actuator can move or respond.
- **Force / Torque Output** – The amount of pushing, pulling, or rotational power it can deliver.
- **Precision** – The accuracy and control of its movement (important for positioning tasks).
- **Durability & Reliability** – How well it handles wear, harsh environments, and continuous operation.
- **Energy Efficiency** – How effectively it converts input energy (electrical, hydraulic, or pneumatic) into motion.
- **Size & Weight** – Whether it fits the available space and is practical for the application.
- **Control Requirements** – How easy it is to control (simple on/off vs. fine positional control).
- **Cost & Maintenance** – Initial price and long-term upkeep needed.

Controllers

- Programmable Logic Controllers (PLCs) and microcontrollers are both used for automation and control, but they differ significantly in design, application, and functionality.
- They connect both sensors and actuators allowing for:
 - Better control of actuators movements
 - Processing of sensor input



PLCs

- **Purpose:** Industrial computers used to control machinery and processes in automation systems.
- **How they work:** Continuously read signals from sensors (inputs), make decisions based on programmed logic, and send commands to actuators (outputs).
- **Key Features:**
 - Rugged Design – withstands vibration, extreme temperatures, and electrical noise.
 - Inputs & Outputs (I/O) – connect to a wide range of digital and analogue devices.
 - Programming – commonly use ladder logic diagrams, designed to be easy for engineers and technicians to understand.
 - Real-Time Operation – process inputs and update outputs instantly to keep systems running smoothly.


Microcontrollers

- **Purpose:** Small integrated circuits that control specific tasks in embedded systems.
- **How they work:** Contain a processor, memory, and I/O ports all on a single chip, allowing them to read sensors, process data, and control actuators directly.
- **Key Features:**
 - Compact & Lightweight – designed for single-purpose or dedicated applications.
 - Integrated Components – CPU, RAM, ROM/Flash, and input/output ports in one device.
 - Programming – commonly programmed in C/C++, Python, or Assembly.
 - Power Efficient – ideal for portable or battery-powered devices.

Microcomputers

- **Purpose:** General-purpose computers built around a microprocessor, designed to perform many tasks and run complex software.
- **How they work:** Contain a processor, memory, storage, and input/output interfaces. Unlike microcontrollers, they run full operating systems and can handle multiple applications.
- **Key Features:**
 - Versatile – capable of multitasking and running advanced programs.
 - Operating Systems – typically run Linux, Windows, or other OS software.
 - Connectivity – support USB, HDMI, Wi-Fi, Bluetooth, and networking.
 - Expandable – allow add-ons like external storage, displays, and sensors.

Microcomputers

- **Purpose:** General-purpose computers built around a microprocessor, designed to perform many tasks and run complex software.
- **How they work:** Contain a processor, memory, storage, and input/output interfaces. Unlike microcontrollers, they run full operating systems and can handle multiple applications.
- **Key Features:**
 - Versatile – capable of multitasking and running advanced programs.
 - Operating Systems – typically run Linux, Windows, or other OS software.
 - Connectivity – support USB, HDMI, Wi-Fi, Bluetooth, and networking.
 - Expandable – allow add-ons like external storage, displays, and sensors.

Computers

- **Purpose:** General-purpose machines designed to run a wide range of applications for work, communication, and entertainment.
- **How they work:** Use a central processing unit (CPU), memory, storage, and input/output devices to process data and execute programs under an operating system.
- **Key Features:**
 - Powerful Processing – handle complex tasks and multitasking with ease.
 - Operating Systems – run software such as Windows, macOS, or Linux.
 - User Interfaces – include monitors, keyboards, and mice for interaction.
 - Connectivity – support Wi-Fi, Bluetooth, USB, and networking for flexibility.

Picking a Controller

- **Application Type** – Is it industrial automation, an embedded device, or a general-purpose computer task?
- **Environment** – Does it need to withstand heat, dust, or vibration? (→ PLCs are rugged.)
- **Complexity of Task** – Simple, single-purpose control (→ Microcontroller) vs. multitasking with an OS (→ Microcomputer/Regular Computer).
- **Inputs/Outputs (I/O)** – How many sensors/actuators must be connected?
- **Real-Time Requirements** – Does it need instant response (→ PLC or Microcontroller)?
- **Cost & Power** – Is low cost/low power essential (→ Microcontroller), or is performance more important (→ PC or Microcomputer)?

Controller Comparison

Feature	Microcontrollers (MCU)	Microcomputers	PLCs
Purpose	Control single, specific tasks in embedded systems	Run operating systems and handle multiple applications	Control industrial machinery & processes
Hardware	CPU, RAM, ROM, I/O all on one chip	CPU, RAM, storage, OS support (like a mini PC)	Rugged CPU with large I/O modules
Programming	C, C++, Python, Assembly	Python, C, C++, Linux-based languages	Ladder Logic, Function Block, Structured Text
Environment	Small devices, portable, low-power	Education, robotics, IoT hubs, general-purpose	Harsh industrial environments
I/O Capability	Limited pins, direct sensor/actuator control	Many ports (USB, HDMI, GPIO), expandable	Large digital & analogue I/O capacity
Applications	Appliances, wearables, IoT devices	Robotics, AI, education projects	Factory automation, production lines, safety systems

Microprocessor

- **Purpose:** The “brain” of a computer – a chip that processes instructions and performs calculations.
- **How they work:** Contain only the CPU (Central Processing Unit), which fetches, decodes, and executes instructions. Unlike microcontrollers, they do not include built-in memory or I/O ports.
- **Key Features:**
 - High Processing Power – capable of handling complex programs and multitasking.
 - Requires External Components – needs RAM, storage, and I/O chips to form a complete computer.
 - Versatile – used in general-purpose computing, from PCs to servers.
 - Runs Operating Systems – such as Windows, Linux, macOS.

